skip to main content


Search for: All records

Creators/Authors contains: "Taylor, Ryan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As species change through evolutionary time, the neurological and morphological structures that underlie behavioral systems typically remain coordinated. This is especially important for communication systems, in which these structures must remain coordinated both within and between senders and receivers for successful information transfer. The acoustic communication of anurans (“frogs”) offers an excellent system to ask when and how such coordination is maintained, and to allow researchers to dissociate allometric effects from independent correlated evolution. Anurans constitute one of the most speciose groups of vocalizing vertebrates, and females typically rely on vocalizations to localize males for reproduction. Here, we compile and compare data on various aspects of auditory morphology, hearing sensitivity, and call-dominant frequency across 81 species of anurans. We find robust, phylogenetically independent scaling effects of body size for all features measured. Furthermore, after accounting for body size, we find preliminary evidence that morphological evolution beyond allometry can correlate with hearing sensitivity and dominant frequency. These data provide foundational results regarding constraints imposed by body size on communication systems and motivate further data collection and analysis using comparative approaches across the numerous anuran species. 
    more » « less
  2. Candolin, Ulrika (Ed.)
    Abstract Females of many species choose mates using multiple sensory modalities. Multimodal noise may arise, however, in dense aggregations of animals communicating via multiple sensory modalities. Some evidence suggests multimodal signals may not always improve receiver decision-making performance. When sensory systems process input from multimodal signal sources, multimodal noise may arise and potentially complicate decision-making due to the demands on cognitive integration tasks. We tested female túngara frog, Physalaemus (=Engystomops) pustulosus, responses to male mating signals in noise from multiple sensory modalities (acoustic and visual). Noise treatments were partitioned into three categories: acoustic, visual, and multimodal. We used natural calls from conspecifics and heterospecifics for acoustic noise. Robotic frogs were employed as either visual signal components (synchronous vocal sac inflation with call) or visual noise (asynchronous vocal sac inflation with call). Females expressed a preference for the typically more attractive call in the presence of unimodal noise. However, during multimodal signal and noise treatments (robofrogs employed with background noise), females failed to express a preference for the typically attractive call in the presence of conspecific chorus noise. We found that social context and temporal synchrony of multimodal signaling components are important for multimodal communication. Our results demonstrate that multimodal signals have the potential to increase the complexity of the sensory scene and reduce the efficacy of female decision making. 
    more » « less
  3. Amaral, Luís A. (Ed.)
    To build better theories of cities, companies, and other social institutions such as universities, requires that we understand the tradeoffs and complementarities that exist between their core functions, and that we understand bounds to their growth. Scaling theory has been a powerful tool for addressing such questions in diverse physical, biological and urban systems, revealing systematic quantitative regularities between size and function. Here we apply scaling theory to the social sciences, taking a synoptic view of an entire class of institutions. The United States higher education system serves as an ideal case study, since it includes over 5,800 institutions with shared broad objectives, but ranges in strategy from vocational training to the production of novel research, contains public, nonprofit and for-profit models, and spans sizes from 10 to roughly 100,000 enrolled students. We show that, like organisms, ecosystems and cities, universities and colleges scale in a surprisingly systematic fashion following simple power-law behavior. Comparing seven commonly accepted sectors of higher education organizations, we find distinct regimes of scaling between a school’s total enrollment and its expenditures, revenues, graduation rates and economic added value. Our results quantify how each sector leverages specific economies of scale to address distinct priorities. Taken together, the scaling of features within a sector along with the shifts in scaling across sectors implies that there are generic mechanisms and constraints shared by all sectors, which lead to tradeoffs between their different societal functions and roles. We highlight the strong complementarity between public and private research universities, and community and state colleges, that all display superlinear returns to scale. In contrast to the scaling of biological systems, our results highlight that much of the observed scaling behavior is modulated by the particular strategies of organizations rather than an immutable set of constraints. 
    more » « less
  4. Noise is a common problem in animal communication. We know little, however, about how animals communicate in noise using multimodal signals. Multimodal signals are hypothesized to be favoured by evolution because they increase the efficacy of detection/discrimination in noisy environments. We tested the hypothesis that female túngara frogs’ responses to attractive male advertisement calls are improved in noise when a visual signal component is added to the available choices. We tested this at two levels of decision complexity (two and three choices). In a two-choice test, the presence of noise did not reduce female preferences for attractive calls. The visual component of a calling male, associated with an unattractive call, also did not reduce preference for attractive calls in the absence of noise. In the presence of noise, however, females were more likely to choose an unattractive call coupled with the visual component. In three-choice tests, the presence of noise alone reduced female responses to attractive calls and this was not strongly affected by the presence or absence of visual components. The responses in these experiments fail to support the multimodal signal efficacy hypothesis. Instead, the data suggest that audio-visual perception and cognitive processing, related to mate choice decisions, are dependent on the complexity of the sensory scene. 
    more » « less